分类: 应用经济学 >> 金融学 发布时间: 2025-04-14 合作期刊: 《新金融》
摘要:自2020年以来,由于供应链中断和新冠疫情后的经济不确定性,预测通货膨胀已成为中央银行面临的一大挑战。机器学习模型可以通过纳入更广泛的变量、允许非线性关系以及关注样本外预测表现来提高预测准确性。在本文中,我们应用机器学习(ML)模型来预测日本近期的核心通胀率。日本是一个具有挑战性的案例,因为通胀在2022年之前一直处于低位,而现在已经上升到了四十年来前所未见的水平。我们对大量预测因子应用了四种机器学习模型以及两种基准模型。对于2023年,两种惩罚回归模型系统性地优于基准模型,其中LASSO提供了最准确的预测。2022年后预测通货膨胀的有效预测变量包括家庭通货膨胀预期、入境旅游人数、日元汇率和产出缺口。