您当前的位置:首页 > 论文详情

“构建区隔”与“超越区隔”:中文播客平台的社交互动研究

"Constructing Distinction" and "Transcending Distinction": A Study on the Social Interaction of Chinese Podcast Platforms

摘要: 近年来,中文播客迎来复兴。随着播客节目的日益丰富和多元化,播客社交正在成为人们交流和互动的一种新趋势。法国学者皮埃尔·布尔迪厄曾提出区隔理论,布尔迪厄认为不同阶层之间经济资本和文化资本的差异会形成审美趣味的分层,最终导致文化消费的社会区隔现象。本研究以布尔迪厄的区隔理论作为基础,采用半结构式访谈法,借助现有的社交可供性理论,从平台、主播、听众三者之间的关系出发。研究发现,播客平台通过其可传情和可协调的特性吸引了一批高学历和高收入的人群,构建了一种新的社会区隔。同时,播客平台利用算法推荐和评论转发分享等功能,实现了致意和连接,使得不同社会阶层和背景的用户能够进行交流和互动,突破了传统的阶层间区隔。可连接和可致意的实现又为可传情提供了可能性,进而促进了平台协调功能的发挥,完成社交互动的闭环。

Abstract: In recent years, Chinese podcasting has witnessed a revival. With the increasing diversity and enrichment of podcast programs, podcast social interaction is emerging as a new trend in people's communication and interaction. French scholar Pierre Bourdieu proposed the theory of distinction, arguing that differences in economic and cultural capital among different social classes create stratified aesthetic tastes, ultimately leading to social distinction in cultural consumption. This study builds upon Bourdieu's theory of distinction, employing a semi-structured interview method and drawing on existing theories of social affordances to examine the relationships among podcast platforms, hosts, and listeners. The research finds that podcast platforms, through their expressive and mediative affordances, attract highly educated and high-income demographics, constructing a new form of social distinction. Meanwhile, podcast platforms leverage features such as algorithmic recommendations, comment forwarding, and sharing to facilitate greetings and connections, enabling users from different social classes and backgrounds to communicate and interact, thereby breaking through traditional class distinctions. The realization of connectivity and greetability in turn provides the possibility for expressiveness, further promoting the fulfillment of platforms' mediative functions and completing the closed loop of social interaction.

版本历史

[V1] 2025-03-03 18:11:44 PSSXiv:202503.00136V1 下载全文
点击下载全文
在线阅读
许可声明
metrics指标
  •  点击量72
  •  下载量14
  • 评论量 0
评论
分享
邀请专家评阅
收藏