您当前的位置:首页 > 论文详情

全球经济政策不确定性的演变趋势:基于EMD-ARIMA模型的预测分析

摘要: 作为经济政策变动的风向标,全球经济政策不确定性(GlobalEconomicPolicyUncertainty,GEPU)指数的动态走势对于经济政策的制定和调整具有重要的参考价值。然而GEPU指数动态路径的影响因素复杂多变,其数据生成过程难以在一个时间序列模型中得到准确的体现。基于“先分解后集成”的建模思路,首先采用经验模态分解(EmpiricalModeDecomposition,EMD)方法将全球经济政策不确定性指数分解为若干相互独立、频率不同的可读信号,其次运用非平稳时间序列ARIMA模型对可读信号分别进行建模预测,最后集成各类可读信号的预测结果。在此基础上,进一步应用VAR模型考察了全球贸易、新冠肺炎疫情等因素对GEPU指数的动态影响。研究发现:(1)通过对训练组和测试组数据的预测值与真实值的对比,发现EMD-ARIMA模型对训练组和测试组数据的拟合精度均优于ARIMA模型;(2)与ARIMA模型相比,EMD-ARIMA模型能够解决由原始数据不确定性、非线性以及不稳定性所导致预测偏差问题,得到精度较高的预测结果;(3)全球贸易、新冠肺炎疫情等因素对全球经济政策不确定性均产生了显著的影响,EMD-ARIMA模型的样本外预测结果显示,GEPU指数在2021年7月之前呈增加趋势,2021年7月至12月逐渐趋于稳定。

版本历史

[V1] 2025-03-27 16:33:12 PSSXiv:202503.03660V1 下载全文
点击下载全文
在线阅读
许可声明
metrics指标
  •  点击量39
  •  下载量3
  • 评论量 0
评论
分享
收藏